
AD-A240 681

lul!11111l1111.1.11
NASA Contractor Report 187601

ICASE Report No. 91-55

ICASE
RECTILINEAR PARTITIONING OF IRREGULAR
DATA PARALLEL COMPUTATIONS

David M. Nicol DTIC
ELECTEEP. 199!U

Ss, B Dj
Contract No. NAS1-18605
July 1991

Institute for Computer Applications in Science and Engineering
NASA Lani4ey Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

f~p or~ pub~ele"I~SSutbution Uaumitd

National Aeronautics and
Space Administration
Langley Research Center 91-11202
Hampton. Virginia 23665-5225

Rectilinear Partitioning of Irregular Data Parallel Computations

David M. Nicol*

College of William and Mary

Abstract

This paper describes new mapping algorithms for domain-oriented data-parallel computa-
tions, where the workload is distributed irregularly throughout the domain, but exhibits localized
communication patterns. We consider the problem of partitioning the domain for parallel pro-
cessing in such a way that the workload on the most heavily loaded processor is minimized,
subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are
useful on architectures that have a fast local mesh network and a relatively slower global net-
work; these partitions heuristically attempt to maximize the fraction of communication carried
by the local network. This paper provides an improved algorithm for finding the optimal par-
tition in one dimension, new algorithms for partitioning in two dimensions, and shows that
optimal partitioning in three dimensions is NP-complete. We discuss our application of these
algorithms to real problems.

*This research was supported in part by tlreArmy Avionics Research and Development Activity through NASA
grant NAG-I-787, in part by NASA grant NAG-1-1132, and in part by NSF Grant ASC 8819373.

1 Introduction

One of the most important problems one must solve in order to use parallel computers is the

mapping of the workload onto the architecture. This problem has attracted a great deal of attention

in the literature, leading to a number of problem formulations. One often views the computation

in terms of a graph, where nodes represent computations and edges represent communication;
for example, see [2]. Mapping means assigning each node to a processor; this is equivalent to
partitioning the nodes of the graph, with the tacit understanding that ncdes in a common partition
set are assigned to the same processor. We will use the terms interchangeably. A common mapping
problem formulation views the architecture as a graph whose nodes are processors and whose
edges identify processors able to communicate directly. The dilation of a computation graph edge
(u, v) is the mini - .m distance (in the processor graph) between the processors to which u and

v are respectively assigned. The dilation of the graph itself is the maximum dilation among all
computation graph edges. Dilation is a measure of how well the mapping preserves locality between

nodes in the mapped computation graph. Results concerning the minimization of dilation can be
found in [4, 9, 16, 21], and their references.

Another formulation (the one we study) directly models execution time of a data parallel com-
putation as a function of the chosen mapping, and attempts to find a mapping that minimizes the

execution time. Workload may again be represented as a geaph, with edges representing data com-
munication, e.g., the stencils used in some partial differential equation solvers [18]. In its simplest
form each node is assumed to have unit execution weight; more general forms permit nodes to have

individual weights. Nodes are mapped to processors in such a way that each processor's sum of node
weights is approximately the same, for example, see [1, 3, 19]. A rigorous treatment of partitioning

three dimensional finite-difference and finite-element domains is found in [23]; unlike our treatment
here, the shape of the subdomains are not a consideration. Minimization of communication costs
subject to load-balancing constraints is considered in [6]; other formulations use simulated anneal-
ing or neural networks to minimize an "energy" function that heuristically quantifies the cost of
the partition [7]. Other interesting formulations consider mapping highly structured computations

onto pipelined multiprocessors[14], and mapping systolic algorithms onto hypercubes [1].
This paper considers the Rectilinear Partitioning Problem (RPP): find an optimal rectilinear

partition of a domain containing irregularly weighted workload. One may view the workload as
being concentrated at discrete coordinates within the domain; alternatively one may represent the

domain's workload in a workload matrix, each of whose elements represents all the workload within
a rectangular fixed-sized region of the domain. A domain with irregularly distributed discrete or

workload can always be transformed into a workload matrix; our problem formulation will thus
be stated in terms of the matrix view. A rectilinear partition of a workload matrix requires each 0

partition element to be an appropriately dimensioned "rectangle" whose dimpnsions exactly match E3

that of each neighbor at each face. "Rectangles" in one dimension are intervals; a "rectangle" in
three dimensions is a rectangular solid. The cost of a rectangle is the sum of all workload within
its boundaries; the cost of the partition is the maximum cost among all its rectangles. The idea •

7 Codes

\+% I i ,

T | . I T T* I IrT g TIg 6 I |g

4-1"- . -4-I-' - "--4- - '-"1-4

4 1i f 41H- ~ H 41i-r i r ,,-rri .-rr . .- r..r -1r
4-- 4 -- 4- 4-- -4 -- 4--4-4-4

... .L _LL..L.J. .L L .J.._LJ...L.L
i L Ji- i

4 i 4 444 44-i4

Figure 1: Two dimensional 4 x 4 rectilinear partition oi a workload matrix representing a two-

dimensional domain

is to let the weight of a rectangle be the time required to execute its implicitly assigned workload
on a processor. The maximum such defines the computatior's finishing time (or its inverse defines
the processing rate) when each rectangle is assig: ed to a different processor. Figure 1 illustrates a

rectilinear partition in two dimensions.
RPP arises when executing physically-oriented numerical computations on certain types of

mesh-connected multiprocessors. For example, some comprt,.tions are based on grids that discretize
a one, two or three dimensional field for numerical sol, . n n x m workload matrix can be
construt-ted by pre-aggregating adjacent grid points to create a rectangular structure; alternatively,
one may chose n and m so large that at most one grid point is rertserted in one cell of the n x m
domain. RPP is motivated by parallel architectures that support very fast "local" communication
over a mesh network, and significantly slower "global" communication. The 0,,ection Machine
provides an example: the speed differential between communication using the local network and the

global router is roughly a factor of six on problems with regular communication patterns [22]. It can
be worse if the global network suffers significant contention. Since communication requirements
in domain-oriented computations are often localized in space, rectilinear partitions will tend to
maximize the volume of communication which can use the fast mesh network.

It is possible to partition a domain with irregularly distributed discrete workload into quadrilat-

erals whose faces match exactly, as do rectilinear partitions. Such partitions will have the desirable
locality of communication properties we seek. However, rectilinear partitions have the advantage
of being expressed simply. One benefit is that one can always compute the processor id of a point
(x, y) with whom wishes to communicate: a binary search on the list of cuts in the X dimension

establishes the X processor coordinate of (x, y)'s processor, another search establishes the Y pro-
cessor coordinate. Simplicity of expression also implies simplicity of construction. There is some
advantage to choosing N + M - 2 cuts instead of choosing (N - 1) x (M - 1) cuts. Finally, the

2

mathematical regularity of rectW;iear partitions make them interesting obJects in their own right.
We consider partitioning in one, two, and three dimensions. It should be noted that a three di-

mensional domain can always be partitioned for a two or one dimensional processor array; likewise,
a two dimensional dorain can be partitioned for a one dimensional processor array. Thus, the par-
titioning dimension describes the communication topology of the target architecture. A distinction
can be made Ietween processor meshes that directly connect diagonally adjacent processors, and
those that don't. The ai-orithms we develop here are primarily concerned with the latter. They
may be used on more fully connected meshizs, but do not attempt to take advantage of the extra.
connectivity.

RPP is a challenging problem, as it is similar to c'-tain NP-complete problems, but is also
similar to problems with polynomial complexity. It is already known that the one-dimensional
problem can be solved in polynomial time [3, 5 17]. Our first result is to improve upon the best
published ID algorithm to ilate, for the case when the computation's size greatly exceeds the
number of processors. Nex. we consider RPP in two dimensions. We show that if the partition in
one dimension (say x) is fixed, then the optimal partitioning in the other dimension can be found in
polynomial time. This result has at least two applications. First, it can be used to find the optimal
2D rectilinear partition; one simply generates all partitions in one dimension, and finds, for each,
the optimal partitioning in the other. While this procedure is correct, it has unreasonably high
complexity. For this reason we develop a 2D iterative refinement heuristic based on our ability to
find conditionally optimal partitions. During each iteration, one finds the optimal partitioning in
one dimension, given a fixed partition in the other. The next iteration uses the solution just found as
the fixed partition, and optimally solves in the other dimension. One then iterates until the partition
stops changing. The procedure is guaranteed to converge monotonically to a local minimum in the
solution space. We discuss application of this technique to two-dimensional problems arising in fluid
dynamics calculations, and compare the quality of solutions produced by the heuristic with solutions
produced by algorithms having fewer restrictions on the partitioning, e.g., binary dissection. We
find that rectilinear partitions can achieve better performance than the other methods, especially
when the grid edges are oriented in two orthogonal directions, or when global communication is
an order of magnitude slower than local communication. Our last contribution is to show that the
problem of finding an optimal rectilinear partition in three dimensions is NP-complete.

The remainder of this paper is organized as follows. In Section §2 we introduce some notation
and develop the cost function we wish to minimize. In Section §3 we give an improved solution
to RPP in one dimension. Section §4 examines RPP in two dimensions, and Section §5 proves
the NP-completeness of finding optimal three-dimensional partitions. Section §6 summarizes our
results.

2 Preliminaries

This section introduces some notation used throughout the paper. The discussion to follow speaks
of the two dimensional partitioning problem; the extension to three dimensions is immediate, and

3

the projection to one dimension simply involves dropping notational dependence on indices in one

dimension.
We define the partitioning problem as follows. Consider an n x m load matrix fLii}, where each

entry Lij _> 0 represents the cost of executing some workload. For example, we might create a load

matrix from a discretized domain by prepartitioning the domain into many rectangular work pieces,
and assign load value Lij to work piece wij, based on the number of grid points and edges defined
within wij. In the limit, we may prepartition the domain so finely that a work piece represents at

most one grid point and its edges.
Our problem is to partition the load matrix for execution on an NV x M array of processors,

as follows. A partition is defined to be a pair of vectors (R, C), where R is an ordered set of row

indices R = (rorl,..., rN), C is an ordered set of column indices C = (Co, cl, ... ,cM), and we

understand that "o = co = 0, rM = m, and cN = n. Given (R, C), the execution load on processor

Pij is the sum of the weights of all the work pieces wz,, with ri-1 < x < ri, and c._1 < y 5 cj.

This is given by
ri Ci

X,,(R, C) = z L Lx.
1 IY=cil +1

We take the overall cost of the partition to be the maximal execution load assigned to any processor:

ir(R,C) = max {Xj(R,C)}.
0li and i

This cost is known as the bottleneck value for the partition. Our object is to find partition vectors

R and C that minimize the bottleneck value.
We have chosen not to include explicit communication costs in this model. This is a largely

practical decision. The data communication inherent in a computational problem tends to be pro-

portional to execution costs. This means that by balancing the execution load we will have greatly

balanced the communication load also, at least if the bandwidth of the network is high enough for
us to ignore contention. It is also true that the execution weights Lij are only estimates to be-

gin with; it seems unlikely that a more complicated model will find significantly better partitions.
Finally, we are assuming that rectilinear partitioning is desirable because local communication

is much cheaper than global communication. If we can ensure that the partition supports local

communication we will have gone a long way towards minimizing communication overhead. Our

empirical study discussed in §4.5 bears out this intuition.

3 One Dimensional Partitioning

fPP in one dimension has been extensively studied as the chains-on-chains partitioning problem
[3, 5, 11, 12, 17]: we are given a linear sequence of work Aieces (called modules), and wish to

partition the sequence for execution on a linear array of processors. Until recently, the best pub-

lished algorithm found the optimal partitioning in O(Mmlogm) time, where M is the number of

processors and m is the number of modules. This solution and those developed in [11] and [17] all

4

involve repeatedly calling a probe function. A recently discovered dynamic programming formula-
tion [5] reduces the complexity further to O(Mm). The solution we present has a complexity of
O(m + (M log M) 2), which is better than O(Mm) when M = O(m/ log in). This solution is also
based on a probe function, which we now discuss in more detail.

In one dimension we are to partition a chain of modules wil,..., w,, with weights L1 ... , Lm
into M contiguous subchains. We use a function probe, which accepts a bottleneck constraint W
and determines whether any partition exists with bottleneck value W', where W' < W. Candidate
constraints all have the form Wij = E=i Lk, because we know that the optimal cost is defined by
the load we place on some processor. If we precompute the m sums W,i (j = 1,..., m), then any
candidate value Wij can be generated in 0(1) time using the relationship Wij = Wij - Wjj-b

Given bottleneck constraint W, probe attempts to construct a partition with a bottleneck
value no greater than W. The first processor must contain the first module; probe finds the
largest index il such that Wl,i < W, and assigns modules 1 through ii to the first processor.
Because the sums W1j increase in j, il can be found with a binary search. It follows that the first
module in the second processor is wi,,. probe then loads the second processor with the longest
subchain beginning with wi,+g that does not overload the processor. This process continues until
either all modules have been assigned, or the supply of processors is exhausted. In Lhe former case
we know that a feasible partition with weight no greater than W exists. In the latter case we
know that this greedy approach does not produce a feasible partition. However, it has been shown
(and indeed is quite straightforward to see) that the greedy approach will find a solution with cost
no greater than W if any solution exists with cost no greater than W. Since the loading of each
processor requires only a binary search, the cost of one probe call is O(M log m).

All solutions based on probe search the space of bottleneck constraints for the minimal one, say
W0,pt, such that probe(Wpt) = tr-ue. The partition probe generates given bottleneck constraint
Wpt is optimal. The solution in [17] examines no more than 4m candidate constraints, which gives
the 1D partitioning problem an overall time complexity of O(Mm log m). As argued by Iqbal[l 1],
another easy way to probe is to compute the sum of all workload in the domain, say Z, and
choose a discretization length e. One may then conceptually discretize the interval [0, Z] into Z/
constraints, and use a binary search to find the minimum feasible constraint. This approach has
a complexity of O(M log(Z/) log m), although the cost of a partition it finds is guaranteed only
to be within E of optimal. The only disadvantage of this method occurs when log(Z/E) is large
relative to m, in which case one may choose to search more cleverly. Towards this end we next
develop the paper's first contribution, a searching technique that finds the optimal partition after
only O(M log m) probe calls1 .

Let Wpt be the minimal constraint for which probe returns value true. The new search
strategy exploits the following structure of an optimal solution constructed by probe. Suppose
processor F is the first processor assigned a load whose weight is exactly W pt. The loads on all
processors I through i - I must be strictly less than Wopt, and hence their loads are not feasible

1This result was originally observed by Iqbal (private communication). We present an independently discovered
proof (and algorithm) which easily extends to a 2D problem.

5

bottleneck constraints. However, the greedy construction process ensures that the load on each
processor up to F is as large as possible. For example, processor 1 is loaded with the longest
subchain, beginning with wl, whose weight does not exceed W.,t. For any W I < W,,,t we have
probe(W') = false; let il be the largest index such that probe(W1,.,) = false. Consider the
relationships

Wl'i, < Wopt < WI,iI+i.

If Wopt < W1,i+I (i.e., if 1 < F) then modules 1 through il will be assigned to processor 1, otherwise
module il + 1 will also be assigned to 1. Supposing that 1 < F, the subchain assigned to processor
2 begins with module wi,+i; define i2 to be the largest index for which probe(W,1 +.i,2) = false.
Under the greedy assignment, processor 2's last module is either wi2 or Wi2+1, depending on whether
F = 2. We may carry out this process for each processor: given ij, ij+l is the largest index for
which probe(Wi,+i,+1) = false. For each ij define wj = Wi,_,+Ii,+1 . From the discussion above
it is apparent that when j F, ij is the first module assigned to processor j under the optimal
greedy partition. wj is the smallest feasible constraint arising from any subchain beginning with
module wi,. Therefore, Wopt = wF. Furthermore, each wj for j > F is a feasible constraint, and
hence must be at least as large as Wopt. This proves the following lemma.

Lemma 1 Let Wopt be the minimal feasible bottleneck weight. Then Wopt = minl<j<_MfWj}.

An important point is that the definitions of the ij's and wj's in no way depend on knowledge
of either F or W,,t. We may discover W0pt by generating each constraint wi, and choosing the
least. In order to find il (and hence w1) we need to search the space of all weights having the form
Wj. As we have already seen, this space can be searched with only 0(logm) calls to probe. Each
probe call costs O(M log m); the cost of finding w1 is thus O(M log2 m). Similarly, given il, we find
i2 using a binary search over all weights of the form Wi,+ 1 j, and so on. As there are M such wj's
to compute, the overall cost of the computation is O(m + (M log M) 2), where an obligatory 0(m)
cost is added to account for preprocessing costs. This complexity is better than O(Mm) whenever
M = O(m/log 2 m), showing that the strategy is most useful when there are many modules to
be processed relative to processors. This is exactly the situation we face when partitioning large
numerical problems. One of the more useful applications of the new algorithm will be as part of
an approach for solving two dimensional problems, our next topic.

4 Two Dimensional Partitioning

Next we turn to partitioning in two dimensions. Our discussion has three parts. First we provide
some contrast by discussing a closely related 2D partitioning problem which is NP-complete. We
then return to our original 2D problem, and describe an algorithm that takes a given fixed column
(alternately, row) partition, and finds the optimal partitioning of the rows (alternately, columns) in
polynomial time. This result can be used to find an optimal 2D partition, albeit with exponential
complexity when N and M are problem parameters.. We describe a heuristic with polynomial-time

6

complexity that finds a local minimum in the solution space. Finally, we discuss our experience
with this algorithm on large irregular grids typical of those used to solve fluid flow problems.

4.1 MLAA Problem

Consider a two-dimensional n x m load matrix representing an n-stage computation, as follows.
Each column represents some module, the weight of wij represents the computational requirement
of module j during "stage" i. The columns are to be partitioned into contiguous groups and
mapped onto a linear array of processors. In this respect the problem is one-dimensional; however,
the objective function is based on both matrix dimensions, as we will see. We assume that the
computation requires global synchronization between stages. The same partitioning of modules
is applied to all stages. Thus, a partitioning that is good for one stage may create imbalance in
another. The execution time of the ith stage is taken to be that of the most heavily loaded processor
during the ith stage, the stage's bottleneck value. The overall execution time is then the sum of
bottleneck values from all stages. The problem of finding the optimal partitioning of columns is
known as the Multistage Linear Array Assignment (MLAA) problem[13]. The MLAA problem has
been shown to be NP-complete. Solutions with polynomial complexity are known if the number of
stages is constant.

The MLAA problem is an interesting point of reference for the two-dimensional partitioning
problem, for, by changing the objective function slightly, we obtain a problem related to two-
dimensional partitioning that has low polynomial complexity. Suppose we seek a partitioning that
minimizes the maximum of the stage bottleneck weights, rather than their sum. This problem is
equivalent to that of finding the optimal two-dimensional rectilinear partitioning, conditioned on
the row (alternatively, column) partitioning being fixed. For example, suppose that row partition
R is given for a two dimensional load matrix. We know then that all work pieces lying in a given
workload column y between workload row indexes ri-I + 1 and ri will 'e assigned to the same
processor, in the i h row of processors. We may therefore aggregate them into a single super-piece
with weight

ri

Ai,y wXY.
,r.l+1

This aggregation creates an N x m weight matrix A. Any subsequent partitioning of the columns
into M contiguous groups completes a rectilinear partitioning. Like the MLAA problem we can
compute the weight of the most heavily loaded processor in each row, and call this the row's
bottleneck weight. The maximum bottleneck weight is then the maximum execution weight among
all processors. However, unlike the MLAA problem, the optimal column partition can be found
quickly, as we now show.

4.2 Optimal Conditional Partitioning

The heart of all our 2D partitioning algorithms is an ability to optimally partition in one dimension,
given a fixed partition in the other. Suppose a row partition R is given. As described in the

7

previous subsection, we can aggregate work pieces forced (by R) to reside on a common processor
into super-pieces, thereby creating an N x m load matrix {Aij ,. This matrix can be viewed as
N one dimensional chains; a common partitioning of their columius will produce a 2D rectilinear
partition.

The problem of finding an optimal column partition can be approached through a minor mod-
ification to the 1D probe function. Given bottleneck constraint 14, we find the largest index cl
such that

Aij < W for all chains i.

This is accomplished with N binary searches, one per chain, each of which finds the longest subchain
whose weight is no greater than W. ci is the length of the subchain withl fewest modules. Like the
1D probe, this one greedily makes cl as large as possible without violating the load constraint in any
chain. Workload columns I through c1 are assigned to the processors in column 1 of the processor
array. The procedure is repeated, assigning columns cl + 1 through C2 to processor column 2, and
so on. It is easily proven by induction on M that this procedure will find a partition with cost
no greater than W, if one exists. The cost of calling probe is O(NMlogm), provided we have
precomputed the partial sums of all N chains (a O(nm) startup cost).

We will later exploit a useful, self-evident property of partitions constructed by this procedure.

Lemma 2 Let W be a feasible bottleneck constraint, and let a row partition be given. Let C =

(Co, CiC2 ,. .. ,cm) be the greedy column partition constructed using W, and let C' = (c, cl , c2, ... ,e)
be any other column partition that gives cost W. Then for all i = 0, 1,2,...,M, ci 2_ ci .

The same improved searching strategy as was developed for the 1D problem can be applied here.
The argument for Lemma I does not depend on the partitioning of a single chain; the key insight
driving the proof is recognition of the structure of the optimal greedily constructed partition. The
same insight applies to this problem, with slightly expanded notation. For all column indices i < j
and row index k, let W,sk = Eji Ak,t. We define io = 0, and for j = 1,..., M define ij to be the
largest index such that

probe({Wi,_,_,+i,,k}) = false for all k = 1,2,. .. ,N, (1)

and define

Wj = Min..WN ,,+I,i+l,k I probe(WVi ,_,+l,j,+l,k) = true}. (2)I<k<N

These new definitions correspond to the old ones in the obvious way. Suppose the minimum
feasible bottleneck constraint is W,,pt, and let F be the column processor index of the first column
where a processor achieves weight Wpt; suppose F > 1. To chose il we examine each workload
row, and for each find the endpoint of the longest subehain whose weight is strictly less than Wpt.
We then define il to be the smallest among these, say for row r. Since Wl,il+,, > Wpt, we know
that probe(W,i+,,) = true. This shows that the set in (2) over which the minimum is taken
is non-empty, so that w, is well defined. The same observation holds for i2, i3,..., F - 1: each wi

8

is well-defined. Now we know that Wi,...+i,i,+l,r = W,,t for some r, showing that wF = Wopt.
Since probe(wj) = true for all j = 1,...,N it follows that W,,pt = minl<j<N{Wj}. With these
definitions, Lemma 1 applies to this problem as well.

The cost of finding an optimal row partition is basically the same as ID partitioning with a
factor of N included to account for the N binary searches each probe call. There are also N times
as many probe calls needed to identify each wi. The overall time cost of optimally partitioning
the columns is thus O(nm + (NM log m) 2). It should be noted that the one-dimensional chains-
on-chains solution in [5] is easily adapted to the optimal conditional partitioning problem. The
adaptation must too suffer an O(nm) startup cost, plus an additional factor of N, yielding an
O(nm + NMm) algorithm It is also possible to ensure that the algorithm finds the "greedy"
optimum, ie., the same one the probe-based algorithm finds. Lemma 2 (using W = Wpt) thus
applies to this problem as well. As we will see, this implies that the dynamic-programming based
solution can be used in the iterative refinement algorithm to be presented in §4.4.

4.3 Optimal 2D Partitioning

It is possible, if unpleasant, to find the optimal 2D rectilinear partitioning using the procedure
just described. There are Q(n(N - 1)) ways of choosing a row partition; for each we can determine
the optimal column partition, and thereby determine the overall optimal partitioning. It may
be possible to reduce the complexity somewhat using a branch-and-bound technique to limit the
number of row partitions considered, nevertheless this algorithm is exponentially complex in N.
We do not yet know if a polynomial-time algorithm exists for this problem, or whether optimal
2D rectilinear partitioning is NP-complete. We do know that in practice N will be too large for
us to consider this approach. In any event, a well-chosen partition will likely be adequate, even if
suboptimal. Thus, we next turn our attention to a relatively fast heuristic.

4.4 Iterative Refinement

We may apply the conditionally optimal partitioning algorithm in an iterative fashion. Suppose
that a row partition R is given. For example, we might construct an initial row partition as follows:
sum the weights of all work pieces in a common row, to create a super-piece representing that row.

Find an optimal 1D partition of those super-pieces onto N processors. Use this partition as R1,
assume it to be fixed, and let C1 be the optimal column partition, given R1. Let ir1 = r(Ri,Ci)
be the cost of that partitioning. Next, fix the column partition as C1, and let R2 be the optimal
row partitioning, given C1. Let ir2 = 7r(R 2, C). Clearly we may repeat this process as many times
as we like; observe that odd iterations compute column partitions and even iterations compute row

partitions.
We could choose a partition vector from either "direction", that is, chosse row indices in the

sequence rl, r 2 ,.. . , N-1 or in the sequence rN-, rN-2,. .. , ri. We assume that the optimal condi-
tional partitioning algorithm approaches the problem from the same direction every iteration, for
both the row and column partitions.

9

A useful feature of the algorithm is that at each iteration, the cost of the solution is no worse
than the cost at the previous iteration.

Lemma 3 Given any initial row partition R 1, the sequence T 1, V 2 ,..., is monotone non-increasing.

Proof: Without loss of generality, suppose that the partition produced at the end of iteration
i - 1 is a row partition R , let C' be the column partition treated as fixed during iteration i - 1.

At iteration i we fix the row partition as R!, and seek the optimal column partition. One of the
possible column partitions is C', thus we know the column partition found will have cost no greater
than 7r(R' , C'). I

Iterative refinement defines a fixed-point computation, a fact that can be used as a termination
condition, as shown in the following lemma.

Lemma 4 For every starting row partition R, there exists an iteration I such that Rj = R1 and
Cj = C1 for all j > I.

Proof: We will need to refer to the elements of Rj and Cj by both position within the vector,
and by the index j. We thus define

Rj = (0, rl(j), r 2(j), .. ., rN- I (j), m)

and
C, = (0,Ci(j),c2(j),...,CN .(j),n).

By Lemma 3 we know there exists an index k and a value b such that ir = b for all j > k. Let
j > k, j odd. Iteration j computes column partition C1 /2+1 , given fixed row partition R/2+1, As

we compute R,/ 2+2 in iteration j + 1, a feasible partitioning is Rj/ 2+2 = Rj/ 2+i. However, Rj/2+2

is "greedy" with respect to Cj/2+j and b, while Rj/2+1 need not be. Thus, by Lemma 2 we must
have ri(j/2 + 2) > ri(j/2 + 1) for all i = 1,2,..., M - 1. The same argument can be applied to
show that ci(j/2 + 2) >_ ci(j/2 + 1) for all i = 1,2,..., N - 1. Since these indices can not grow
without bound, eventually the row and column partitions must stop changing. I

Lemma 4 shows that a safe termination procedure is to iterate until the row and column parti-
tions stop changing. It is natural to ask how many iterations are required to achieve convergence.

We can bound this number, although only loosely.

Lemma 5 Let U be the number of unique bottleneck constraints. The iterative refinement algorithm
converges in O(U . (n + in)) iterations.

Proof: The proof of Lemma 4 implies that when convergence has not yet been achieved, no more
than n + m successive iterations may occur without the partition cost decreasing. The present
lemma's conclusion follows from the observation that there are no more than U possible values for

10

100000 100000
010000 010000
001000 001000
000100 000100
0000 1 0 0 000 1 0
0000011 0 0001

Converged Suboptimal Solution Optimal Solution

Figure 2: Example showing that iterative refinement may converge to a suboptimal solution

the partition cost. In the worst case U = O((nm)2), since every bottleneck constraint is defined by
two row indices, and two column indices. U

Despite the O((nm) 2(n + m)) bound, our experience has been that convergence is achieved in
far fewer iterations, perhaps in O(max{N, M}) iterations. One possible explanation is that the
solution space for the problems we study has many local minima; another is that there are strong
a-yet-undiscovered theoretical reasons for the fast convergence.

The solution found by iterative refinement is locally optimal, in the sense that we are unable
to reduce the partition cost by moving any set of row indices, or any set of column indices. It
niay, however, be possible to improve the solution by simultaneously moving a row index and a
column index. This is illustrated by the example in Figure 2. It is possible for iterative refinement
to converge to the partition shown with bottleneck weight 3; this cost is reduced by appropriately
moving both the row and column partitions. The practical severity of this phenomenon is unclear.
Should it prove to be a problem, the algorithm might be adapted to perturbation of row and column
partitions simultaneously after convergence, to determine whether any improvement in the solution
quality can be achieved.

The ultimate converged cost of a partition constructed via iterative refinement depends on the
starting partition R1.We have tried a number of different seemingly natural methods for computing
R1. Somewhat to our surprise, we found that the best method (marginally) is to generate several
initial partitions randomly, and keep the best resulting partition. This certainly makes sense if the
partition solution space has but a few local minima. Randomly generation increases the likelihood
of hitting an initial partition that leads to the optimal solution.

In the subsection to follow we discuss an application of iterative refinement to irregular mesh
problems. We find that iterative refinement can effectively reduce communication costs and some-
times achieve better performance than other partitioning methods.

11

4.5 Application of Iterative Refinement

We have applied iterative refinement to irregular two-dimensional meshes typical of those used to
solve two-dimensional fluid flow problems with irregular meshes. One class of mesh is "unstruc-
tured"; Figure 3(a) illustrates an unstructured grid (called Grid A henceforth) surrounding the
cross-section of an air-foil [15]; (b) shows a closeup of a dense region of A. Figure 3(c) illustrates
part of another unstructured grid [24], called Grid B, but one that is far less irregular. Finally,
Figure 3(d) illustrates a grid C that is highly regular, except for an irregularly placed region of
extremely high density. All edges in the latter grid have either vertical or horizontal orientation.
As we will see, the latter type of grid gives rectilinear partitioning its greatest advantage over other
techniques.

The grids we study have tens of thousands of grid points; A has 11143 points and 32818 edges,
B has 19155 points and 56895 edges, C has 45625 points and 90700 edges. We chose to partition
with the highest possible refinement; however, the number of grid points precludes the actual
construction of a load matrix where every element represents at most one point. Instead, prior to
an iteration, we construct a load matrix with either N or M rows (depending on whether we are
performing a column or a row iteration), and T columns, T being the number of points. This is
accomplished in time proportional to the size of this matrix. While the cost of an iteration may
become dominated asymptotically by this setup cost, in our experience it makes little sense to
create and store an immense, sparse matrix. On the grids described here, the complete rectilinear
partitioning algorithm ran in under one minute on a Sparc 1+ workstation. The other methods
were not much faster, as the I/O time for loading the grid tended to dominate them all. One
exception to this occurred on partitioning the largest grid for the largest processor array. The
partitioning algorithm no longer ran in memory, and suffered from a great deal of paging traffic as
a consequence.

We report on experiments conducted on the three forementioned grids, using three different par-
titioning methods: iterative refinement, binary dissection [1], and "jagged" rectilinear partitioning
[20]. Binary dissection is a commonly used technique which very carefully balances workload; how-
ever. its partitions are constructed without regard for communication patterns. Jagged rectilinear
partitioning has recently been proposed to overcome some of binary dissection's problems. The
domain is first divided in N strips, of approximately equal weight. Following this, each strip is
individually divided into M rectangles of approximately equal weight. While partition cuts do span
the entire domain in one dimension, they are "jagged" in the other.

We also experimented with so-called "strip" partitions, defined by the optimal 1D solution of the
projection of these 2D problems onto the line. We do not report the results of these experiments,
as strip partitions were uniformly worse than the ones we study, due primarily to excessive inter-
processor communication (even if primarily local), caused by a poor area to perimeter ratio.

Our experiments assessed the overall cost of a partition to a processor to be the sum of the
weights of the grid points it is assigned, plus a communication cost that depends on both the
architecture, and the mapping. Computations on grids of this type are based primarily on edges;
hence the cost of a grid point is taken to be the total number of its edges. The communication

12

(a) (b)

c) (d)

Figure 3: Gridls used in application study. (a) is a highly unstructured mesh around an airfoil
cross-section, (b) is a closeup. (c) is a more regular unstructured mesh; (d) is an artificial mesh
with perfectly orthogonal edges and an offset region of high density.

13

cost is defined by edges that span different processors. Each edge is classified as being internal,
local, or global, depending on whether the edge is completely contained in one processor, spans
processors which are adjacent in the processor mesh, or spans processors which are more distantly
separated. In the experiments we present, "adjacent" means adjacent in a North-East-West-South
mesh. We comment later on results obtained assuming a mesh that includes direct connections
between diagonally adjacent processors as well.

Each processor's local communication cost is taken to be the number of its local edges; the global
communication cost is the number of global edges times a parameter G. An edge's communication
cost is charged to both of its processors. The cost of a partition is the maximum cost of any processor
in that partition. We may estimate speedup as the sum of the weights of all grid points divided by
the maximum processor cost. We have experimentally compared a number of these estimates with
actual speedup measurements on an Intel iPSC/860, and found them to be reasonably accurate.
Of course, the iPSC/860 does not have the same type of local/global communication differential as
that assumed here; the cost of a message is largely insenstive to the distance it must travel (at least
in the absence of serious network conjestion). Nevertheless it seems intuitive that scaling global
communication by a parameter G is a appropriate model for the architectures of interest.

We use three metrics to characterize a partition. One is fl, the fraction of edges that are
internal; another is fL the fraction of external edges that are local. Finally, fu is the average
processor workload divided by the load of the maximally loaded processor, under the assumption
that all communication has cost 0. ft and fL are measures of how well the partition preserves
locality of communication, while fu is a measure of how well the partition balances workload.
Table 1 presents these quantities, measured on our problem set, mapping to 16 x 16, 32 x 32, and
64 x 64 processor arrays. For both fl and fE we see that rectilinear partitioning is somewhat better
at keeping edges internal, and that it excels at keeping external edges local. The price it pays for
this locality is increased load imbalance, as is evident from the fu values. Of course, this is to be
expected, since a rectilinear partition is a constrained version of a binary dissection.

Figures 4, 5, and 6, give estimated processor efficiencies on the three grids, measured as the
estimated speedup divided by the number of processors. Each performance curve is parameterized
by G, in order to show how performance is affected by an increasing cost differential between local
and global communication. Each graph plots performance curves for each of the three partitioning
methods (encoded here as BD,JP,and RP) with 16 x 16, 32 x 32, and 64 x 64 processor arrays. All
initial RP row partitions were selecting by computing the optimal 1D partition for N processors.

For grid A we see that BD has a clear advantage over the other methods when global commu-

nication is as cheap as local. However, as G grows it increasingly suffers from its global edges; On
the 16 x 16 and 32 x 32 arrays JP surpasses it once G > 3: however it fails to surpass BD at all on
the 64 x 64 array. On a 16 x 16 array, RP surpass BD once G > 5, and surpasses JP once G > 9.

On the 32 x 32 array RP surpass both BD and JP after G > 5, whereas on the 64 x 64 array it is
bested by both BD and JP. At this extreme point most edges go off processor, and the workload

is small. BD's advantage in load balancing then dominates. Observe however that performance at
the right end of the curve is not good; this may be indicative of placing too small a problem on the

14

Processor array 16 x 16 32 x 32 64 x 64

(hI,fE, fu) (h ,fE, fu) (fIf,fu)
Binary Dissection (0.73,0.32,0.98) (0.49,0.29,0.92) (0.19,0.24,0.72)
Jagged Partitioning (0.70,0.79,0.84) (0.45,0.73,0.68) (0.19,0.52,0.53)
Rectilinear Partitioning (0.77,0.91,0.27) (0.61,0.82,0.27) (0.37,0.68,0.24)

fl, fE, and fu values for Grid A

Processor array 16 x 16 32 x 32 64 x 64

(h I, fE , fu) (, , u) (I, f, fu)
Binary Dissection (0.84,0.37,0.98) (0.67,0.37,0.96) (0.37,0.38,0.86)
Jagged Partitioning (0.84,0.95, 0.98) (0.67,0.87,0.95) (0.39,0.77,0.86)
Rectilinear Partitioning (0.84,0.97,0.92) (0.68,0.94,0.80) (0.44,0.86,0.66)

fi, fg, and fu values for Grid B

Processor array 16 x 16 32 x 32 64 x 64

(f, fE, fu) (fI, fE, fu) (fh, fE, fu)

Binary Dissection (0.91,0.27,0.99) (0.82,0.29,0.98) (0.62,0.30,0.92)
Jagged Partitioning (0.91,0.92,0.98) (0.82,0.76,0.98) (0.64,0.66,0.92)

Rectilinear Partitioning (0.91,1.00,0.85) (0.83,1.00,0.85) (0.70,1.00,0.69)
fi, fE, and fu values for Grid C

Table 1: Fraction fI of internal edges, fraction fL of external edges which are local, and processor
utilization fu under no communication costs, for different meshes, processor arrays, and partitioning
methods

machine.

Grid B is much more regular than A, a fact that translates into higher performance under
higher values of G. On the two smaller arrays the RP curves cross the JP and BD curves in the
region of G = 5. On the largest array JP is somewhat better than the other methods, while the
RP and BD curves are surprisingly similar after G > 3.

Grid C was constructed specifically to highlight RP's advantages over the other methods. Under
RP, none of its edges are global, so performance is insensitive to G. RP's cross-over points are
again in the region G E (3,5); owing to its complete avoidance of global costs, its performance is
substantially better than the others under high values of G.

15

1.0

- -Binary Dissection, 16 x 16
0.9 --- Binary Dissection, 32 x 32

-O-Binary Dissection, 64 x 64
-Jagged, 16 x16

0.81 -'--. Jagged, 32 x32
-~-Jagged, 64 x64
-*-Rectilinear, 16 x 16

0.7- --- Rectilinear, 32 x 32
A*- Rectilinear, 64 x 64

C
0

S 0.6-

0.5-

0.-
0
b.

0.3

0.2

0.3-

0.1

0 2 4 6 8 10 12 14 16

G

Figure 4: Processor utilizations on the BD, JP, and RP partitions of grid A, for 16 x 16, 32 x 32,

and 64 x 64 processor arrays

16

~- Binary Dissection, 16 x 16
-* -Binary Dissection, 32 x 32

1.0 a- Binary Dissection, 64 x 64
-- Jagged, 16 x16
-*-Jagged, 32 x32

0.9-~ Jagged, 64 x64
-~- Rectilinear, 16 x 16

0.8-Rciier64x4

0.7-

0

S0.6-

.5

.4-

.5

0.3

0.2

0 .1

0.0

0 2 4 6 8 10 12 14 16

G

Figure 5: Processor utilizations on the BD, JP, and R.P partitions of grid B, for 16 x 16, 32 x 32,
and 64 x 64 processor arrays

17

-U-Binary Dissection, 16 x 16
-U---Binary Dissection, 32 x 32

- - Binary Dissection, 64 x 64
-Jagged, 16 x16

1.0* 'p Jagged, 32 x32
-'-Jagged, 64 x64

S Rectilinear, 16 x 16
0.9 -*- Rectilinear, 32 x 32

-h- Rectilinear, 64 x 64

0.8-

0.7-i

C

. 0.6-

0.5-

0
Ch
4)0 0.4-
0

0.3-

0.2-

0.11

0.01
0 2 4 6 8 10 12 14 16

G
Figure 6: Processor utilizations on the BD, JP, and RP partitions of grid C, for 16 x 16, 32 x 32,
and 64 x 64 processor arrays

18

Processor array 16 x 16 32 x 32 64 x 64

Grid A 13 11 37

Grid B 9 11 19
Grid C 5 5 5

Table 2: Iterations used by iterative refinement to converge

On these problems, rectilinear partitioning requirt'A far fewer iterations to reach convergence

than would be suggested by Lemma 5. Table 2 gives the number of iterations required for each of

the nine rectilinear partitions generated.

We also evaluated the cost of these partitions assuming that diagonally adjacent processors are

connected in the local network. In every case the performance of BP was completely unaffected.

RP's performance improved slightly, usually by no more than 10%. JP's performance improved

sharply, to the extent that it outperforms RP on almost all the Grid A and Grid B partitions. RP

retains its superiority on Grid C. These results suggest that jagged partitions effectively capture

locality when that locality is defined to include diagonally connected processors. Of course, there

is no guarantee that a jagged partition will map perfectly onto an 8-neighbor mesh; an interesting

future line of inquiry is to develop algorithms that guarantee such locality. Rectilinear partitions

are most desirable when the rectilinear constraint matches the rectilinear nature of North-East-

West-South meshes.
The data presented he-e indicates that rectilinear partitions have their utility. When global

communication values are high, it is worthwhile to accept some load imbalance for the sake of

communication locality. On the other hand, it is clear that rectilinear partitions are not desirable

when the problem is highly irregular and global communication is comparatively cheap. We plan

further experimentation with these partitioning strategies on actual codes on actual machines.

5 Three Dimensional Partitioning

We have already seen that RPP in one dimension can be solved in polynomial time; it is not yet

known whether the two-dimensional problem is tractable. In this section we demonstrate that RPP

in three dimensions is NP-complete. We establish the fact by demonstrating that an arbitrary

monotone 3SAT problem [8] carL be solved by any three-dimensional RPP algorithm. Since the

monotone 3SAT problem is NP-complete, so is RPP in three dimensions.

The general 3SAT problem has the following form. We are given n Boolean literals XJ,... ,X,

and m clauses Ci,..., C. Each clause is the disjunction of three distinct literals, each of which

may be complimented or uncomplimer~ted. For example, (XI + 3 + X17) and (.i + .2 + x 14) are

two clauses. The 3SAT problem is to fird a Boolean assignment for each literal such that every

clause evaluates to true. The monotone 3SAT problem requires that every given clause have either

19

all complimented literals, or all uncomplimented literals. A useful consequence of the monotone
restriction is that for any given triple of literals (xi, xj, xh) there are at most two clauses involving
all three simultaneously-one where they are all complimented, and one where they are not. It
has been shown that the monotone 3SAT problem is NP-completd [8]. Minor modifications to
the approach we develop will work for general 3SAT problems; it is simply easier to describe the
transformation if we assume the clauses are monotone.

A choice of partitioning can be interpreted as an assignment of literal values and assessment of a
clanse's truth value. We first introduce these ideas by application to the monotone 2SAT problem,
where clauses have two literals (2SAT can be solved in polynomial time). Let x, and x2 be two
literals; only two monotone clauses are possible, (z1 + x2) or (i + 22). In either case, only one
assignment of values to the literals can cause the clause not to be satisfied, z = X2 = 0 in the
former case and x = X2 = 1 in the latter. We capture this in a partitioning framework with a 3 x 3
domain with binary workload weights, to be partitioned into four pieces. The center weight is 1;
one corner is also weighted with 1 depending on the clause, and all other weights are 0. Figure 7(a)
illustrates the domain, and the assignment of infeasibility products aIx2, XI12, x 1 X2, and x1i 2 to
opposing corners. The choice of a row partition corresponds to an assignment to xj, the choice of
a column partition corresponds to an assignment to X2. Our weighting rule is to assign a 1 to a
corner whose infeasibility product is true when the corresponding truth assignment falls to satisfy
the clause. Thus, if (XI + X2) is a problem clause, then the il2 corner is given a 1; if (-i + 22) is a
clause thea the xIx 2 corner is given a 1. If both clauses appear in the problem, both corresponding
corners ar,3 weighted by 1. This is equivalent to requiring that Xa1 E X2 = 1 (E being the exclusive
OR opera'or). Also, in our problem transformation it will be possible for x'1 and X2 to represent
the same literal. If this is the case, we place Is in the xfi2 and ilX2 corners, in order to force
a common selection for the literal, in both its column and row representations. Figure 7(b) and
(c) illustrates the weighting corresponding to conditions (xi + X2) and (XI E X2) respectively, and
shows the partition corresponding to the assignment x, = 0, X2 = 1. Observe that the bottleneck
weight is 1, whereas it would be 2 if the infeasible assignment x1 = 0 and X2 = 0 were chosen.
The infeasible assignment is the only one achieving a bottleneck cost of 2. This is true of the
construction for any clause, and is the key to determining whether the assignment corresponding
to some partitioning satisfies all clauses.

A monotone 2SAT problem can be transformed into a rectilinear partitioning problem using the
ideas expressed above. Given n literals X1,..., a',, we will create a (4n- 1) x (4n- 1) binary domain.
For each variable we assign three contiguous rows, and three contiguous columns. Variables' sets
of rows and columns are separated by a single "padding" row and single "padding" column whose
purpose will be to force a partition within each variable's set of rows, and within each variable's
set of columns. We assign Is and Os described above for the 3 x 3 intersection of xi's rows and
Xi's columns. Elements at the intersection of two variables that never appear in the same clause
are all assigned value 0. We place a 0 wherever a "middle" row for a variable meets a padding
column; likewise, we place a 0 wherever a variable's middle column meets a padding row. Otherwise,
every other entry of a padding row or a padding column is 1. The construction for the problem

20

x,=1 0 N_ 0 0 N=J 0 0 0 1

X=0 0 1 01N= 0 1 0= 0 1 01
1 0X 0 1 0 0

x2-O x2=O1 X2 -0 X2 -- X2 x2--

(a) General construction (b) Domain for X1+ X2, (c) Domain for x G X2
of domain to represent partition for assignment
a clause _

Figure 7: Transformation of 2SAT Problem into Rectilinear Partitioning Problem

(X1 + X2)(1 2 + x3) is shown in Figure 8. We seek an optimal rectilinear partitioning of this domain
onto a (3n - 1) x (3n - 1) array of processors. Weights in padding rows and columns are defined
in such a way that for a bottleneck weight of 1 to be achieved it is necessary that a partition never
group padding and non-padding rows or group padding and non-padding columns. This forces a
partition of every variable's rows, and every variable's columns.

If the domain can be partitioned and achieve a bottleneck cost of 1, then the 2SAT problem is
solved by the assignment implicit in the optimal partitioning. Otherwise the 2SAT problem cannot
be solved. Figure 8 also illustrates the partition corresponding to the solution x, = 1, X2 = 0, and
X3 =0.

The extension of these constructs to three dimensions is straightforward. Let X1, x2, X3 be
literals. In a monotone 3SAT problem the only possible clauses are (xI + X2 + X3) and (21 + t2 + i3);

in the former case only the assignment x, = X2 = X3 = 0 fails to satisfy the clause, in the latter
case only x, = X2 = X3 = 1 fails to satisfy the clause. In the event that both clauses appear, their
conjunction is not satisfied it and only if the variables are all assigned the same value. Now let us
associate a 3 x 3 x 3 clause region with these literals. The 2SAT construction associated x, with the
Y dimension and X2 with the X dimension; we augment this and associate x3 with the Z dimension.
It is convenient to view a clause region as three stacke~d 3 x 3 arrays with XY orientation. The
centermost element of the middle array will have value 1, all other elements of the middle array
are 0. Like the 2SAT problem, the four corners of the lowest 3 x 3 array represent products of all
three literals. In the 3SAT case, all products in the "bottom" array include f3 and all products in

21

xlx 2

x1 0 011 0 0 Oil 0

0 1 0 0 1 010 0

1 OIl 1 110 1 1 11O 1

01 1 forced by padding

X2(O 1 111 0 1ll 0

010 10 010 0

1 0I 1 1 110 1 11 i 0i Literal value selection

(000 1 00l0 1 110 0
x3 0 110 0 Oil 0 0 1

\0 00 d1 6 ' 1 010 1 X 3

I I I
x1 x2=0 x3=0

Figure 8: Example of 2SAT problem (x1 + X2)(2 + 23) mapped to 2D rectilinear partitioning of

9 x 9 binary domain onto 6 x 6 array of processors. Partition of solution x, = 1, x2 = 0, X3 = 0 is

shown.

the "top" array include x3. The x, and x2 combinations are identical to the 2SAT problem. For

example, the infeasibility products in the northwest, northeast, southwest, and southeast corners

of the top array are fIx2x3 , f 1 f 2X31 X1 X2X3 , and Xlf 2 .3 respectively. Like the 2SAT problem, we

weight a corner with 1 if the truth assignment satisfying the corresponding infeasibility product

fails to satisfy the clause. Thus, if (X1 + X2 + Z3) appears as a clause, we place a 1 in the ili 2i 3

corner. If (il + 22 + i 3) is a clause then we place a 1 in the X1X2 X3 corner. Both is are placed if

both of these clauses appear in the problem. All other entries of the clause region are 0. All clause

regions corresponding to three distinct literals that do not appear in a clause are zeroed out. Clause

regions involving intersections of a literal and itself are weighted to ensure that a bottleneck value

of 1 is achieved only if partitions are chosen corresponding to the same selection of literal value in

each dimension. For example, if x, and X3 happen to be the same literal, then a 1 is placed in any

corner whose product involves x1.3 or 1X3.

Assignment of a value for z corresponds to selection of a plane with YZ orientation. The

22

plane's intersection with each layer in the clauFe region looks the same-it is either the x, = 0
line or the x, = 1 line as seen in the 2SAT problem (Figure 7). Similarly, assignment of a value

for X2 corresponds to a plane whose intersection with each layer is identical, either the line for

X2 = 0 or the line for X2 = 1. Finally, selection of X3 = 1 is accomplished by selecting an XY plane
that separates the bott -a two layers from the top layer, while selection of X3 = 0 separates the

bottom layer from the top two. Under this construction, selection of planes corresponding to an

assignment that makes an infeasibility product true will place the centermost 1 in the same volume

as the "infeasibility 1, giving rise to a bottleneck weight of 2. This fact is important enough to

state formally.

Lemma 6 Let I(XI, X2 , X3) be any infeasibility product whose i-sition in a clause region is set to
value 1. Then any partition whose associated assignment sets I(XI, X2, X 3) = 1 places the infeasi-
bility 1, and the clause region's center I in the same partition volume. The bottleneck cost of any

such partition is at least 2.

Like the 2SAT mapping, we add "padding" layers to ensure that any partition with cost 1 must

choose one of two planes in each dimension of each clause region. The assignment of is and Os to

padding layers is similar to the 2SAT case. Figure 9 defines the assignment in terms of how each
layer's elements are weighted in the immediate vicinity of a clause region. Figure 9(a) shows how
a portion of the padding layer with (XY orientation) is weighted when centered directly above or
below a clause region (the heavy lines illustrate how the clause region is positioned). The only way

to separate the three is in each corner is to choose the four partitioning layers with XZ orientation
and four with YZ orientation that do not intersect the 3 x 3 core. These layers ensure that no

elements on the XZ and YZ faces of the clause region will be grouped with any elements from
any other clause region-at least if a bottleneck cost of 1 is to be achieved. Figures 9(b) and (c)
then show how to weight elements in padding layers with XZ and YZ orientation, depending on
whether the padding layer intersects a layer containing a boundary or middle layer of the clause

region. Weights for the clause region (which is outlined) are not included. The corner is seen in
Figure 9(b) are adjacent to the corner Is seen in Figure 9(a); in order to achieve a bottleneck cost
of 1 it will be place two partitioning planes with XY orientation to contain the XY padding layer.
This ensures that any element at an XY face of the clause region will not be grouped with elements
from any other clause region.

To transform a monotone 3SAT problem we construct a, (4n - 1) x (4n - 1) x (4n - 1) domain.
The first three coordinate positions in each dimension correspond to %1; the fourth coordinate
position in each dimension corresponds to padding, the next three coordinate positions in each

dimension correspond to X2, and so on. The domain is weighted as described above. We have seen
that in order to achieve a bottleneck cost of 1 it is necessary to contain each padding layer with
two partitioning planes. This defines (2n - 1) planes orthogonal to each dimension. Furthermore,

it is also necessary to appropriately partition each clause region in each dimension. This leads to

an additional n partitioning planes orthogonal to each dimension. Consequently, the dimensions of
the target architecture are (3n - 1) x (3n - 1) x (3n - 1).

23

11011 10001
001

l00 0 0 0 0

10001 0 01 I

1_10 10 0011

(a) Padding layer in XY dimension, (b) Intersection in XY plane of boundary layer for
centered with respect to a 3x3x3 3x3x3 clause region ad padding layers in XZ

clause region and YZ dimensions

00000

0 01
0 0

-0 0

(c) Intersection in XY plane of middle layer for
3x3x3 clause region and padding layers in XZ

and YZ dimensions

Figure 9: Weighting of elements in padding planes

Finally, we must show that under this construction, the 3SAT problem has a solution if and
only the corresponding three dimensional partitioning problem achieves a cost of 1. This is an easy
consequence of the fact that each volume in a partitioned clause region has weight no greater than
1 if and only if no clause region is partitioned to satisfy one of its infeasibility conditions (either
clause infeasibility or conflicting assignment of the same literal). Since monotone 3SAT is in NP,
then three dimensional RPP is in NP. Since one can always check in polynomial time whether a
proposed RPP solution achieves bottleneck cost 1, three-dimensional RPP is NP-complete. In fact,
since the RPP matrix we construct is binary, we have a stronger result.

Theorem 7 Binary RPP in three dimensions is NP-complete.

24

6 Summary

This paper examines the problem of partitioning with one, two, or three dimensional rectilinear
partitions. When used to balance workload in data parallel computations having localized commu-

nication, such partitions can be expected to reduce the need for expensive global communication.
For the one-dimensional case we improved upon the best published solution to date when

m > M, reducing the cost of finding the optimal partition of m modules among M processors to
O(m + (M log rn)2). For the two-dimensional case we showed how it is possible to find the best
possible partitioning in a given dimension, provided that the partition in the alternate dimension
remains fixed. This result can be used to find the optimal partition in two dimensions, but with
exponentially large cost (if the numbers of processors in both dimensions is a problem parameter).

The result also serves as the basis for a heuristic that iteratively improves upon a solution. The
heuristic is shown to converge to a fixed point, in a bounded number of iterations. Empirical studies
show that the heuristic may provide some performance advantage when the differential between

the local and global network bandwidth is moderately large. Finally, we showed that the problem
of finding an optimal three dimensional rectilinear partition is NP-complete.

Acknowledgements

We thank Adam Rifkin for his help in programming. Discussions on this problem with Joel Saltz
and Shahid Bokhari were, as always, quite useful.

References

[1] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multipro-
cessors. IEEE Trans. on Computers, C-36(5):570-580, May 1987.

[2] F. Berman and L. Snyder. On mapping parallel algorithms into parallel architectures. Journal
of Pcrallel and Distributed Computing, 4:439-458, 1987.

[3] S. H. Bokhari. Partitioning problems in p irallel, pipelined, and distributed computing. IEEE
Trans. on Computers, 37(1),48-57, January 1988.

[4] M.Y. Chan and F.Y.L. Chin. On embedding rectangular grids in hypercubes. IEEE Trans.

on Computers, 37(10):1285-1288, October 1988.

[5] H.-A. Choi and B. Narahari. Algorithms for mapping and partitioning chain structured parallel
computations. In Proceedings of the 1991 Int'l Conference on Parallel Processing, St. Charles,
Illinois, August 1991. To appear.

[6] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hyercube by recursive
mincut partitioning. Journal of Parallel and Distributed Computing, 10:35-44, 1990.

25

[7] G. Fox, A. Kolawa, and R. Williams. The implementation of a dynamic load balancer. Tech-
nical Report C3P-287a, Caltech Report, February 1987.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Co., New

York, 1979.

[9] C.-T. Ho and S.L. Johnsson. On the embedding of arbitrary meshes in boolean cubes with
expansion two dilation two. In Proceedings of the 1987 Int'l Conference on Parallel Processing,
pages 188-191, August 1987.

[10] O.H. Ibarra and S.M. Sohn. On mapping systolic algorithms onto the hypercube. IEEE Trans.
on Parallel and Distributed Systems, 1(1):48-63, January 1990.

[11] M.A. Iqbal. Approximate algorithms for partitioning and assignment problems. Technical
Report 86-40, ICASE, June 1986.

[12] M.A. Iabal and S.H. Bokhari. Efficient algorithms for a class of partitioning problems. Tech-
nical Report 90-49, ICASE, July 1990.

(13] R. Kincaid, D.M. Nicol, D Shier, and D. Richards. A multistage linear array assignment
problem. Operations Research, 38(6):993-1005, 1990.

[14] C.-T. King, W.-H. Chou, and L.M. Ni. Pipelined data-parallel algorithms. IEEE Trans. on
Parallel and Distributed Systems, 1(4):470-499, October 1990.

[15] D.J. Mavriplis. Multigrid solution of the two-dimensional Euler equations on unstructured
triangular meshes. AIAA Journal, 26:824-831, 1988.

[16] R.G. Melhem and G.-Y. Hwang. Embedding rectangular grids into square grids with dilation
two. IEEE Trans. on Computers, 39(12):1446-1455, Decemeber 1990.

[17] D.M. Nicol and D.R. O'Hallaron. Improved algorithms for mapping parallel and pipelined
computations. IEEE Trans. on Computers, 40(3):295-306, 1991.

[18] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and problem partitionings: Their
influence on the performance of multiple processor systems. IEEE Trans. on Computers,
C-36(7):845-858, July 1987.

[19] P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite element graphs' onto processor
meshes. IEEE Trans. on Computers, 36(12):1408-1424, December 1987.

[20] J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Performance effects of irregular commu-
nication patterns on massively parallel multiprocessors. Journal of Parallel and Distributed
Computing, 1991. To appear. Available as ICASE Report 91-12, ICASE, NASA Langley Re-
search Center, MS 132C, Hampton, VA 23665.

26

[21] D.S. Scott and R. Brandenburg. Minimal mesh embeddings in binary hypercubes. IEEE Trans.

on Computers, 37(10):1284-1285, October 1988.

[22] L.W. Tucker and G.G. Robertson. Architecture and applications of the Connection Machine.

Computer, 21:26-38, August 1988.

[23] S. Vavasis. Automatic domain partitioning in three dimensions. SIAM Journal on Scientific
and Statisical Computing, July 1991. To appear.

[24] D.L. Whitaker, D.C. Slack, and R.W. Walters. Solutiou algorithms for the two-dimensional

Euler equations on unstructured meshes. In Proceedings AIAA 28th Aerospace Sciences Meet-
ing, Reno, Nevada, January 1990.

27

MReport Documentation Page
1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.NASA CR-187601I
ICASE Report No. 91-55

4. Title and Subtitle 5. Report Date

RECTILINEAR PARTITIONING OF IRREGULAR DATA July 1991
PARALLEL COMPUTATIONS 6. Performing Organization Code

7, Authoris) 8. Performing Organization Report No.

David M. Nicol 91-55

10. Work Unit No.

.9. Performing Organization Name and Address 505-90-52-01

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering
Mail Stop 132C, NASA Langley Research Center NAS1-18605
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration Contractor Report
Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes
Langley Technical Monitor: Submitted to Journal of Parallel
Michael F. Card and Distributed Computing

16. Abstract

This paper describes new mapping algorithms for domain-oriented data-parallel
computations, where the workload is distributed irregularly throughout the domain,
but exhibits localized communication patterns. We consider the problem of parti-
tioning the domain for parallel processing in such a way that the workload on the
most heavily loaded processor is minimized, subject to the constraint that the
partition be perfectly rectilinear. Rectilinear partitions are useful on archi-
tectures that have a fast local mesh network and a relatively slower global net-
work; these partitions heuristically attempt to maximize the fraction of comunica-
tion carried by the local network. This paper provides an improved algorithm for
finding the optimal partition in one dimension, new algorithms for partitioning in
two dimensions, and shows that optimal partitioning in three dimensions is NP-com-
plete. We discuss our application of these algorithms to real problems.

17. Key Words (Suggested by Autrorisl) 18. Distribution Statement

mapping, partitioning, rectilinear, 61 - Computer Programming and Software
algorithms

Unclassified - Unlimited
19 Security Classif. lof this report) 20 Security Classif. (of this page) 21 No of pages 22. Price

Unclassified Unclassified 29 A03

NASA FORM 106 OCT BE
NASA.W41t, 1991

